

 	GitHub
	Docs
	Status
	Support
	Downloads

 If you want the TL;DR version, you can skip to the summary
and recommendations.

History

According to the git history, Jakob Truelsen started this project the day
after Qt 4.4 introduced QtWebKit. The initial commit seems more a demo,
but soon grew to have a lot of new features. Although Qt 4.5 enhanced the
QtWebKit API, the focus wasn’t on the HTML to PDF conversion use case, so
the first Qt patch got introduced. As an example of how far ahead of the
curve this was, the equivalent support was added for Chrome 64 in 2017
– more than 8 years later!

During the early years, the focus of both Google and Apple was the web
platform – printing (especially to PDF) simply wasn’t a focus area.
So although there were attempts to upstream the API changes, there
wasn’t much interest in getting them merged. At the same time, the only
other capable tool at that time (which is still going strong) was
PrinceXML, but it was commercial and had steep license fees so the
popularity of wkhtmltopdf kept on exploding.

 Fun fact: Ariya Hidayat, who did an initial review of the API changes
was then working at Nokia (which had acquired Qt in 2008) and would go
on to develop PhantomJS, which too was based on QtWebKit and enabled
a whole class of other tools to be developed.

Even as the upstreaming work stalled, Jakob and other contributors kept
developing new features and extending the Qt patches. Once Qt 5.0 was
released in 2012, due to a quirk in the way C++ libraries are developed
meant that no new APIs could be introduced in the Qt 5.x lifecycle.

During the 2012-2014 timeframe, the project was stagnant – the number
of users kept on increasing but the number of developers didn’t. This
resulted in a lot of issues being created in the tracker. In most
open-source projects, some of the users eventually step up and become
contributors – which didn’t happen as the project was an intersection
between Qt and WebKit (both written in C++) while most users were just
familiar with HTML, CSS and JS.

Meanwhile, interesting things were happening in the wider world. Google
decided to fork WebKit into Blink in April 2013, and Qt decided to
follow with it by announcing Qt WebEngine within 6 months. Although
their plan was to keep developing both, it didn’t work out and QtWebKit
was eventually deprecated in 2015 and removed in 2016. It had been on
life support for years ever since it was removed from WebKit within
a month of the Qt WebEngine announcement.

Back in wkhtmltopdf-land, a shiny new 0.12.0 release happened in
early 2014. Ashish Kulkarni became the maintainer after that and
all further releases in the 0.12.x series were made by him (in case
it isn’t obvious, he’s the author of this long and boring essay 😁).
However, things weren’t rosy: the 0.12.0 release was based on Qt 4.8.5
but Qt 5.0 had been already released just under 2 years ago – so there
was an urgent need to update the underlying engine.

Initially, QtWebKit 2.3 seemed promising but it turned out to be a
red herring: it was supported mostly by Linux distributions and not
officially by Qt. Although there were some contributions to both Qt4
and Qt5Base/Qt5WebKit in this time period – it was a small fraction
of the patches that needed to be upstreamed. Less than a year later
in 2015, QtWebKit would be deprecated and there was effectively
no upstream to contribute to.

History tends to repeat itself, and the same thing happened in 2015-2016:
too many users, too few developers and not enough clarity on what was to
be done to take things forward. At the same time, there was growing
awareness about the sorry state of WebKit security (for those who read
it, wkhtmltopdf depends on the WebKit1 in-process API). It looked like
things would improve with a revamped QtWebKit fork which would be
accepted by most Linux distributions, but that turned out to be a mirage.

Regardless, an initial plan for 0.13 major release was drawn and work
started. But work on the revamped QtWebKit stalled after 5.212 alpha2
in 2017 and so did the motivation to continue on 0.13 😞. Although the
revamped QtWebKit has revived again in 2019, received funding via
Patreon/GitHub and annulen has made great progress, the status shown
by GitHub (as of 2020-06-10) shows how much it has to catch up:

 This branch is 2947 commits ahead, 9266 commits behind WebKit:master.

Plus Qt 6.0 is going to ship this November, and there’s uncertainity
over the future of Qt itself. Meanwhile, Chrome has made great
strides since 2016 when they started making Printing/PDF a focus –
this same fact led to a significant maintainer stepping down for
PhantomJS. Also, if you see the puppeteer page.pdf API, it looks
eerily similar to the options used by wkhtmltopdf – which is a good
thing, as it’s well supported and has a much more modern browser engine 🎉

But this has led to a Blink monoculture – almost everyone uses the
same browser engine, which doesn’t feel healthy for someone who lived
through the IE 6 days, I personally had to support that monstrosity
even as late as 2014 (in a very conservative banking context). Even
though Google is unlikely to do that, things can change in the future
so more competition is always good. Note that these are the personal
views of Ashish Kulkarni, not of anyone else.

Summary

	Qt 4 (which wkhtmltopdf uses) hasn’t been supported since 2015, the
WebKit in it hasn’t been updated since 2012.
	Qt 5 is supported, but removed QtWebkit in 2016 (Qt 5.6), development
stopped after 2012 but minor fixes continued till 2015.
	QtWebKit 5.212 by annulen uses a version more than 4 years old, but
is packaged by major Linux distributions.
	qtwebkit-dev-wip uses a version of WebKit almost 1.5 years old, and
isn’t ready for release yet – packaging by distributions comes later!

Where do you contribute to upstream the patches? It makes sense to only
do the effort if it’s going to be maintained – browsers have a fast
release candence exactly for this, to address security issues. If you
wish to donate money, please sponsor QtWebKit instead … that’ll help
more projects than just this one and will ensure that there is a future.

Future Plans

	After the 0.12.6 release, I’ll do a final 0.12.7 release by Aug 2020
which fixes any 0.12.6 regressions and review/merge already submitted
PRs by a lot of people (ignored till now due to personal reasons 🙈)
	Work on rebaselining the patches to QtWebKit 5.212 – although
outdated, it’ll be a practice run to see if it’s possible at all.
	If the above point is successful, submit them to the Qt and QtWebKit
projects and get them merged after review, changing wkhtmltopdf as
required.

There is no deadline by when the last two points will happen, or even
that they will be done at all – it all depends on the time available
to the maintainer and if volunteers step up to take up some tasks. So,
please stop asking about that 🙏

Recommendations

	Do not use wkhtmltopdf with any untrusted HTML – be sure to
sanitize any user-supplied HTML/JS, otherwise it can lead to
complete takeover of the server it is running on! Please consider
using a Mandatory Access Control system like AppArmor or SELinux,
see recommended AppArmor policy.
	If you’re using it for report generation (i.e. with HTML you control),
also consider using WeasyPrint or the commercial tool Prince –
note that I’m not affiliated with either project, and do your diligence.
	If you’re using it to convert a site which uses dynamic JS, consider
using puppeteer or one of the many wrappers it has.

 Project maintained by Ashish Kulkarni, originally created by Jakob Truelsen.

 	GitHub
	Docs
	Status
	Support
	Downloads

